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Ergodicity for the Dissipative Boussinesq Equations
with Random Forcing
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We study the stationary measure for the two-dimensional Boussinesq equation
with random forcing. We prove the ergodicity for the two-dimensional stochas-
tically forced Boussinesq equation. We also study the Galerkin truncations of
the three-dimensional Boussinesq equations under degenerate stochastic forc-
ing. We follow closely the previous results on the stochastically forced Navier–
Stokes equations.

KEY WORDS: Boussinesq equations; stochastic equations; ergodicity; invari-
ant measure.

1. INTRODUCTION

We are interested in the following n-dimensional stochastically forced dis-
sipative Boussinesq equations with n=2 or 3:

∂u
∂t

+ (u ·∇)u+∇p−ν�u+σθ �en= ∂Wu(x, t)
∂t

,

∇ ·u=0,
∂θ
∂t

+ (u ·∇)θ −κ�θ = ∂Wθ (x, t)
∂t

,

(1.1)

where u is the fluid velocity vector field, p is the scalar pressure, θ is
the scalar temperature, ν is the positive normalised fluid viscosity or Pra-
ndtl number, κ is the positive thermal diffusivity or Lewis number, σ is
the Rayleigh number. σθ �en can be interpreted as the gravitational force,
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i.e., �en is the unit vertical direction to the earth and Wu, Wθ are the
white noises. Boussinesq system in itself has an important physical mean-
ing. Furthermore, two-dimensional Boussinesq system has the similarity
with the three-dimensional axisymmetric flows. The global in time exis-
tence of the strong solution for two-dimensional deterministic dissipative
Boussinesq system is standard and well known (for the recent progress on
the dissipative Boussinesq type equations, see refs. 1 and 2). The questions
we are interested in are the statistical properties of the stochastic system.
Our first main result is that if all the determining modes are forced then
the two-dimensional stochastically forced Boussinesq equation possesses a
unique stationary measure. The ergodicity of the two-dimensional stochas-
tically forced Navier–Stokes equation has been intensively studied by many
authors (e.g. see refs. 3–10 and references therein). Moreover, the ergodic-
ity for the more general dissipative equations including stochastic Ginz-
burg–Landau equations was studied in ref. 11. We follow the strategy of
ref. 6 and 11 closely. For the proof of the first main result, we take Wu

and Wθ as the following simple form. For N >0, let

Wu(x, t)=
∑

|k|�N
σkwk(t, ω)ek(x)

and

Wθ(x, t)=
∑

|k|�N
σ̃kwk(t, ω)ẽk(x),

where wk’s are standard complex valued Wiener process satisfying w−k(t)=
wk(t) and σk, σ̃k ∈C with |σk|>0, are the amplitudes of the forcing,

{
ek(x)=

(−ik2
ik1

)
(eik·x/|k|), k∈Z

2
}

are the basis in the space of L2 divergence-free, mean zero vector fields on
T

2, the two-dimensional torus and {ẽk(x)= eik·x, k ∈ Z
2} are the basis in

the space of L̃2 scalar fields on T
2(we denote L̃2 for the discrimination of

L2 vector field). We denote L2 ⊕ L̃2 by L
2. Define B(u, v)=−Pdiv(u ·∇)v,

�2u= −Pdiv�u, where Pdiv is the L2 projection operator onto the space
of divergence-free vector fields. Let σ 2

max = max{|σk|2 : |k| � N}, σ̃ 2
max =

max{|σ̃k|2 : |k|�N}, Eul =∑|k|�N |k|2l |σk|2 and Eθl =∑|k|�N |k|2l |σ̃k|2. Writ-
ing u(x) = ∑

k ukek(x) and θ(x) = ∑
k θkẽk(x), we will define Hα={u=

(uk), u0 =0,
∑
k |k|2α|uk|2<∞} and H̃ α={θ=(θk), θ0=0,

∑
k |k|2α|θk|2<∞}.

In the following, we also denote H̃ α by Hα for simplicity. We will work on
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the probability space (
, F,Ft ,P, χt ). We associate 
 with the canonical
space generated by all dωk(t). F and Ft are, respectively, the associated
global σ -algebra and filtration generated by W(t). Lastly, χt is the shift on

 defined by χt dωk(s)=dωk(s+ t). Notice that χt is an ergodic group of
measure-preserving transformations with respect to P. Expectations with
respect to P will be denoted by E. Projecting (1.1) onto the divergence-free
vector field, we obtain the following system of Ito stochastic equation:

du+ν�2u(x, t)dt=B(u, u)dt+σa(θ)dt+dWu(x, t),

dθ −κ�θ(x, t)dt=−(u ·∇)θdt+dWθ(x, t),
(1.2)

where a(x) = −Pdiv(x�en). (1.2) generates a continuous Markovian sto-
chastic semi-flow on L

2 =L2 × L̃2 defined by φωs, t (u0, θ0)= (u, θ)(t, ω; s,
(u0, θ0)). When s=0, we write φωt .

Theorem 1.1. There exist some absolute constant Ĉ and C1 such that
if N2 � Ĉ(Eu0 +C1Eθ0 ), then (1.2) has a unique stationary measure on L

2.

The strategy of the proof of Theorem 1.1 is as follows. The exis-
tence of the stationary measure is rather standard(see ref. 4). Hence in this
paper, we are only interested in the uniqueness of the stationary measure.
The uniqueness of the stationary measure of two-dimensional Navier–
Stokes equations is strongly studied by many authors. Our strategy for the
proof of Theorem 1.1 is to reduce the dynamics of the Boussinesq equa-
tion to the dynamics of a finite dimensional set of low modes with mem-
ory. The reduced dynamics are no longer Markovian but rather Gibbsian.
The finite dimensional Gibbsian dynamics have a nondegenerate noise,
and have a unique stationary measure if the memory is short ranged. If
µ is any given stationary measure on L2, then it can be extended to a
measure µp on the path space C((−∞, 0], L

2). Let A = {(u(s), θ(s)) ∈
C((−∞, 0], L

2), u(ti) ∈ Ai, i = 0, ..., n}, where Ai are Borel sets of L
2

for some t0, ..., tn. We let B = {((u, θ), ω), (u, θ)∈A0, φ
ω
t0,ti
(u, θ)∈Ai, i =

1, ..., n}. We will define µp(A)= (P ×µ)(B). Symbolically, if (u(·), θ(·))∈
C((−∞, 0],L2), then (ψωt (u, θ))(s)= φωs (u, θ)(0) for some s ∈ [0, t ] and
(ψωt (u, θ))(s)= (u(s), θ(s)) for s�0. If µ is invariant then µp is invariant
in the sense that

∫
C((−∞,0],L2)

F ((u, θ))dµp(u, θ)=E

∫
C((−∞,0],L2)

F (χtψ
ω
t (u, θ))dµp(u, θ)

for all bounded functions on C((−∞, 0], L
2) and t�0.
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For our second main result, we consider the finite dimensional Galer-
kin approximations of the three-dimensional dissipative Boussinesq equa-
tions with degenerate stochastical forcing in the domain T

3, with periodic
boundary conditions, where Wu,Wθ are Brownian motions with some sim-
plifying assumptions stated later. We write

u(t, x)=
∑
k∈Z3

uk(t)e
ik·x,

θ(t, x)=
∑
k∈Z3

θk(t)e
ik·x,

where u−k= ūk and θ−k= θ̄k. Then as usual we project our equation on the
space of divergence-free vector fields and finally we take the finite dimen-
sional Galerkin truncation. We also set

dWu=
∑

quk dβ
k
ut e

ik·x and dWθ =
∑

qθk dβ
k
θt e

ik·x.

Hence we obtain the following finite-dimensional system of stochastic
differential equations:

duk = [−ν|k|2uk − i
∑

(k ·uh)(ul − k ·ul
|k|2 k)

−σ(θ̃k − k · θ̃k
|k|2 k)]dt+quk dβ

k
ut ,

dθk = [−κ|k|2θk − i
∑

(k ·uh)θl ]dt+qθk dβkθt ,

where θ̃k= (0,0, θk)T , N is a fixed threshold, and sum is over h, l∈KN and
h+ l=k. We define

KN ={k∈Z
3| |k|∞ �N, k �= (0, 0, 0)},

where we exclude (0,0,0) because in this part we are interested in the case
under no mean stochastic forcing. For simplicity, we assume that the noise
takes values in the space of divergence-free vector fields and covariance
is diagonal in the Fourier space. Now we are ready to state our second
theorem.

Theorem 1.2. Let K be the set of modes forced. Assume that the
noise satisfies the above assumptions and the set K contains the three
indices (1,0,0), (0,1,0), and (0,0,1). Then the finite dimensional system
admits a unique invariant measure.
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The existence of an invariant measure can be proved by standard
compactness argument. For the proof of the uniqueness, we reduced
it to two parts. First, we prove the transition probability densities are
regular, i.e., the diffusion operator is hypoelliptic. Then we prove the
associated Markov process is irreducible in the sense starting from any
initial position, the dynamics enters any neighborhood of the origin infi-
nitely often(see refs. 12 and 13). Once we have these two properties, we
can follow some arguments in ref. 4 to prove Theorem 1.2. Recently, many
authors have intensively studied above techniques for the ergodicity of the
solutions of the stochastic equations(see refs. 5, 14 and 15 and references
therein). For this part, we follow closely refs. 5 and 15. In the following,
C will be used as a generic constant.

2. ENERGY ESTIMATES

In this section, we derive energy and enstrophy estimates using similar
method in refs. 6 and 9.

We fix a positive integer M and consider the Galerkin approximations
defined by u(M)(t) = ∑

|k|�M u
(M)
k (t)ek and θ(M)(t) = ∑

|k|�M θ
(M)
k (t)ẽk.

u(M)(t) and θ(M)(t) satisfy an equation of exactly the same form as the
full solution except the nonlinearity has been projected to the terms of
order less than or equal to M. We let EuMl =∑|k|�M |k|2l |σk|2 and EθMl =∑

|k|�M |k|2l |σ̃k|2. Since our estimates are independent of the order of
approximations M, we sometimes neglect the superscript M. Applying
Ito’s formula to the maps {uk}→ (

∑ |uk|2)p and {θk}→ (
∑ |θk|2)p, we have

the followings for the energy moments:

d|u(t)|2p
L2 = 2p|u(t)|2(p−1)

L2 [−ν|�u(t)|2
L2 dt+σ 〈a(θ(t)), u(t)〉L2 dt

+〈u(t), dWu〉L2 ]+2p(p−1)|u(t)|2(p−2)
L2 (

∑
|uk(t)|2|σk|2) dt

+p|u(t)|2(p−1)
L2 EuM0 dt

and

d|θ(t)|2p
L2 = 2p|θ(t)|2(p−1)

L2 [−κ|∇θ(t)|2
L2 dt+〈θ(t), dWθ 〉L2 ]

+2p(p−1)|θ(t)|2(p−2)
L2 (

∑
|θk(t)|2|σ̃k|2) dt

+p|θ(t)|2(p−1)
L2 EθM0 dt.

Here 〈�αu(t), dWu(t)〉L2 and 〈�αθ(t), dWθ(t)〉L2 denote
∑
k |k|α

uk(t)σkdwk(t) and
∑
k |k|αθk(t)σ̃kdw̃k(t), respectively. The analysis of the
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energy moments of the Boussinesq equations is slightly different from that
of two-dimensional Navier–Stokes equations. First we remark that

|a(θ(t))|L2 �C|θ(t)|L2 .

For a fixed H > 0, we denote the stopping time T = inf{t � 0 : |u(t)|2
L2 �

H 2 or |θ(t)|2
L2 �H 2}. Denoting by Mu

t and Mθ
t the local martingale term,

we denote the stopped martingales by MuT
t and MθT

t . The quadratic var-
iation of MuT

t and MθT
t are finite as follows:

[MuT , MuT ]t �2p(σmax)
2
∫ t

0
|u(s∧T )|2p

L2 ds�2p(σmax)
2H 2pt <∞

and

[MθT , MθT ]t �2p(σ̃max)
2
∫ t

0
|θ(s∧T )|2p

L2 ds�2p(σ̃max)
2H 2pt <∞.

Since E[MuT , MuT ], E[MθT , MθT ]<∞, we have EMuT
t =EMθT

t =0. Using
the optional stopping time lemma and the fact that Mu

t∧T =MuT
t∧T and

Mθ
t∧T =MθT

t∧T , we have

E|u(t ∧T )|2p
L2 +2pνE

∫ t∧T

0
|u(s)|2(p−1)

L2 |�u(s)|2
L2 ds

�E|u(0)|2p
L2 +pνE

∫ t

0
|u(s)|2p

L2 ds+pκC1E

∫ t∧T

0
|θ(s)|2p

L2 ds

+2p(p−1)E
∫ t∧T

0
|u(s)|2(p−2)

L2 (
∑
k

|uk(s)|2|σk|2) ds

+pE

∫ t∧T

0
|u(s)|2(p−1)

L2 EuM0 ds

and

C1E|θ(t ∧T )|2p
L2 +2pκC1E

∫ t∧T

0
|θ(s)|2(p−1)

L2 |∇θ(s)|2
L2 ds

�C1E|θ(0)|2p
L2 +2p(p−1)C1E

∫ t∧T

0
|θ(s)|2(p−2)

L2 (
∑

|θk(s)|2|σ̃k|2) ds

+pC1E

∫ t∧T

0
|θ(s)|2(p−1)

L2 EθM0 ds.
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Using Poincaré’s inequality produces that

E|u(t ∧T )|2p
L2 +C1E|θ(t ∧T )|2p

L2 +pν
∫ t

0
E|�u(s)|2

L2 |u(s)|2(p−1)
L2 ds

+pκC1

∫ t∧T

0
E|∇θ(s)|2

L2 |θ(s)|2(p−1)
L2 ds

�E|u(0)|2p
L2 +C1E|θ(0)|2p

L2

+[2p(p−1)(σmax)
2 +pEuM0 ]E

∫ t∧T

0
|u(s)|2(p−1)

L2 ds

+C1[2p(p−1)(σ̃max)
2 +pEθM0 ]

∫ t∧T

0
E|θ(s)|2(p−1)

L2 ds.

Since u(t) and θ(t) are continuous in time, T → ∞ as H → ∞ and
t ∧T → t . By taking M→∞, we have for p=1,

E|u(t)|2
L2 +C1E|θ(t)|2

L2 +νE
∫ t

0
|�u(s)|2

L2 ds+κC1E

∫ t

0
|∇θ(s)|2

L2 ds

�E|u(0)|2
L2 +C1E|θ(0)|2

L2 + (Eu0 +C1Eθ0 )t (2.1)

and for p>1 and some constant C0>0,

E|u(t)|2p
L2 +C1E|θ(t)|2p

L2 +pν
∫ t

0
E|�u(s)|2

L2 |u(s)|2(p−1)
L2 ds

+pκC1

∫ t

0
E|∇θ(s)|2

L2 |θ(s)|2(p−1)
L2 ds

�E|u(0)|2p
L2 +C1E|θ(0)|2p

L2 +C0

∫ t

0
E|u(s)|2(p−1)

L2 ds

+C0C1

∫ t

0
E|θ(s)|2(p−1)

L2 ds. (2.2)

By applying Gronwall’s inequality, we obtain the following estimates on
the energy moments:

E|u(t)|2
L2 +C1E|θ(t)|2

L2 � e−min{ν, κ}t (E|u(0)|2
L2 +C1E|θ(0)|2

L2)

+Eu0 +C1Eθ0
min{ν, κ} (1− e−min{ν, κ}t ) (2.3)
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and for any p>1,

E|u(t)|2p
L2 +C1E|θ(t)|2p

L2

� e−min{ν, κ}t (E|u(0)|2p
L2 +C1E|θ(0)|2p

L2)

+C0

∫ t

0
e−min{ν,κ}s(E|u(s)|2(p−1)

L2 +C1E|θ(s)|2(p−1)
L2 )ds. (2.4)

For the analysis of the enstrophy moments, we need Lq estimates of tem-
perature θ . Applying Ito’s formula to the map θ→|θ |q produces

d|θ |q = (−u ·∇|θ |q +qκ|θ |q−2θ�θ + q(q−1)
2

|θ |q−2(
∑

|σ̃k|2|eik·x |2)) dt
+q|θ |q−2θdWθ .

Define stopping time T = inf{t�0: |θ(t)|q−1
L2(q−1) �Hq−1}. By integrating over

time interval [0, t ∧T ], it follows that:

|θ(t ∧T )|q � |θ(0)|q +q
∫ t∧T

0
|θ |q−2θ dWθ(s)

+
∫ t∧T

0
(−u ·∇|θ |q +κq|θ |q−2θ�θ + q(q−1)

2

×|θ |q−2(
∑

|σ̃k|2)) ds.

Integrating over T
2 and using the Fubini Theorem, we obtain that

|θ(t ∧T )|qLq + 4(q−1)
q2

κ

∫ t∧T

0
|∇|θ(s)|(q/2)|2

L2 ds

� |θ(0)|qLq + q(q−1)
2

(
∑

|σ̃k|2)
∫ t∧T

0
|θ(s)|q−2

Lq−2 ds

+q
∫ t

0
〈|θ |q−2θ, dWθ 〉L2 .

By taking expectation on the both sides of the above inequality and using
optional stopping time lemma, it is immediate that

E|θ(t)|qLq + 4(q−1)
q2

κ

∫ t

0
E|∇|θ |q/2|2

L2 ds

�E|θ(0)|qLq + q(q−1)
2

(
∑

|σ̃k|2)
∫ t

0
E|θ(s)|q−2

Lq−2 ds. (2.5)
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Thus we have expectation Lq estimates of the temperature θ .
For the enstrophy estimates we consider the following Ito equations:

d|�u(t)|2p
L2 = 2p|�u(t)|2(p−1)

L2 [−ν|�2u(t)|2
L2 dt−σ 〈�a(θ(t)),�u(t)〉L2 dt

+〈�2u(t), dWu〉L2 ]+2p(p−1)|�u(t)|2(p−2)
L2

×(
∑

|k|2|uk(t)|2|σk|2)dt
+p|�u(t)|2(p−1)

L2 EuM1 dt,

and

d|∇θ(t)|2p
L2 = 2p|∇θ(t)|2(p−1)

L2 [−κ|�θ(t)|2
L2 dt−〈u ·∇θ, �θ〉L2 dt

+〈�θ(t), dWθ 〉L2 ]+2p(p−1)|∇θ(t)|2(p−2)
L2

×(
∑
k

|k|2|θk(t)|2|σ̃k|2) dt

+p|∇θ(t)|2(p−1)
L2 EθM1 dt.

Define the stopping time T = inf{t � 0 : |�2u(t)|2 �H 2 or |�θ(t)|2 �H 2}.
First we consider p=1 case.
We begin the enstrophy estimates by providing following interpolation
inequality for q, r satisfying 1<r= (2q−4)/(q+2):

C|∇θ |4
L2r � C|�θ |(4r(q+2)−4q)/(r(q+2))

L2 |θ |4q/r(q+2)
Lq

� κC1

2
|�θ |2

L2 +C|θ |qLq .

We also remark that |�a(θ)|2
L2 �C|∇θ |2

L2 for some constant C > 0. Inte-
grating over the time interval [0, t ∧T ) and using Young’s inequality and
the above inequalities(we take q and r to satisfy above condition), then we
have

|�u(t ∧T )|2
L2 +2ν

∫ t∧T

0
|�2u(s)|2

L2 ds

� |�u(0)|2
L2 +2

∫ t∧T

0
〈�2u(s), dWu〉L2

+ν
∫ t∧T

0
|�u(s)|2

L2ds+
κC1

2

∫ t∧T

0
|∇θ(s)|2

L2 ds+EuM1 (t ∧T )
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and

C1|∇θ(t ∧T )|2L2 +2κC1

∫ t∧T

0
|�θ(s)|2

L2 ds

�C1|∇θ(0)|2L2 +C1

∫ t∧T

0
〈�θ(s), dWθ 〉L2

+C1

∫ t∧T

0
|〈(u ·∇θ), �θ〉L2 |ds+C1EθM1 (t ∧T )

�C1|∇θ(0)|2L2 +C1

∫ t∧T

0
〈�θ(s), dWθ 〉L2 + ν

2

∫ t∧T

0
|∇u|2

L
r
r−1

ds

+C
∫ t∧T

0
|∇θ |4

L2r ds+C1EθM1 (t ∧T )

�C1|∇θ(0)|2L2 +C1

∫ t∧T

0
〈�θ(s), dWθ(s)〉L2 + ν

2

∫ t∧T

0
|�u(s)|2

L2 ds

+κC1

2

∫ t∧T

0
|�θ(s)|2

L2 ds+C
∫ t∧T

0
|θ |qLq ds+C1(t ∧T )EθM1 .

Taking expectation on the both sides, adding above two inequalities, and
using Optional Stopping Lemma(H →∞, T →∞), we obtain

E|�u(t)|2
L2 +C1E|∇θ(t)|2

L2 +ν
∫ t

0
E|�2u(s)|2

L2 ds+κC1

∫ t

0
E|�θ(s)|2

L2 ds

�E|�u(0)|2
L2 +C1E|∇θ(0)|2

L2 +CE|θ(t)|qLq t+ (Eu1 +C1Eθ1 )t. (2.6)

For the general p case, we proceed as the following. First we note that for
small ε >0,(e.g., we take q=2p+4)

|∇θ |2(p−1)
L2 (|∇θ |2

L4p/(p+1) |∇u|L2p/(p−1) )

� ε|∇u|2(p−1)
L2 |�u|2

L2

+C|∇θ |(4p2−2p+2)/(2p−1)
L2 |�θ |2(p−1)/2p−1

L2

� ε|∇u|2(p−1)
L2 |�u|2

L2 + ε|∇θ |2(p−1)
L2 |�θ |2

L2

+C|∇θ |2(p+1)
L2

� ε|∇u|2(p−1)
L2 |�u|2

L2 + ε|∇θ |2(p−1)
L2 |�θ |2

L2

+C|θ |
q
2
Lq |�θ |L2 |∇θ |p−1

L2

� ε|∇u|2(p−1)
L2 |�u|2

L2 +2ε|∇θ |2(p−1)
L2 |�θ |2

L2 +C|θ |qLq .
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Using this kind of interpolation inequality and proceeding similarly to
p=1 case, we have

E|�u(t)|2p
L2 +C1E|∇θ(t)|2p

L2

+pν
∫ t

0
E|�u(s)|2(p−1)

L2 |�2u(s)|2
L2 ds+κpC1

×
∫ t

0
E|∇θ(s)|2(p−1)

L2 |�θ(s)|2
L2 ds

�E|�u(0)|2p
L2 +C1E|∇θ(0)|2p

L2 +CE|θ(t)|qLq t

+pEu1
∫ t

0
E|�u|2(p−1)

L2 ds+pC1Eθ1
∫ t

0
E|∇θ |2(p−1)

L2 ds <∞. (2.7)

Thus we obtain the energy and enstrophy estimates.

Lemma 2.1. For some positive constants C0(σmax, σ̃max, Eui , Eθi , p),
C1(κ, ν, σ ), and C, we have energy estimates (2.1) and (2.2). Using Gron-
wall’s inequality, we have (2.3) and (2.4). For the temperature scalar field
θ , we have (2.5). Finally, we have enstrophy estimates (2.6) and (2.7).

The following lemma is helpful for constructing nice future pasts.

Lemma 2.2. Fix any δ > 1/2, and a ∈ (0, 1). Let (u(t), θ(t)) =
φωt (u0, θ0). There exists a K1>0 such that whenever |u0|2L2 +C1|θ0|2L2 <C0,

P

{
|u(t)|2

L2 +C1|θ(t)|2L2 +ν
∫ t

0
|�u(s)|2

L2 ds+κC1

∫ t

0
|∇θ(s)|2

L2 ds

�C0 + (Eu0 +C1Eθ0 )t+K1(t+1)δ for all t�0
}
�1−a.

Proof. The energy inequality reads

|u(t)|2
L2 +C1|θ(t)|2L2 +ν

∫ t

0
|�u(s)|2

L2 ds+κC1

∫ t

0
|∇θ(s)|2

L2 ds

�C0 + (Eu0 +C1Eθ0 )t+
∫ t

0
〈u(s), dWu(s)〉L2 +C1

∫ t

0
〈θ(s), dWθ(s)〉L2 .

Since |u0|2L2 +C1|θ0|2L2 <C0, all we need to show is that

P

{
Mu
t � K1

2
(t+1)δ and C1M

θ
t � K1

2
(t+1)δ for t�0

}
�1−a
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for K1 large enough, where Mu
t = ∫ t

0 〈u(s), dWu(s)〉L2 and Mθ
t = ∫ t

0 〈θ(s),
dWθ(s)〉L2 . The quadratic variation [Mu, Mu]t can be calculated and one
sees that

[Mu, Mu]t � (σmax)
2
∫ t

0
|u(s)|2

L2 ds

and

[Mθ, Mθ ]t � (σ̃max)
2
∫ t

0
|θ(s)|2

L2 ds.

Hence

([Mu, Mu]t )p�σ 2p
max

(∫ t

0
|u(s)|2

L2

)p
�σ 2p

maxt
p−1

∫ t

0
|u(s)|2p

L2 ds

and

([Mθ, Mθ ]t )p� σ̃ 2p
max

(∫ t

0
|θ(s)|2

L2

)p
� σ̃ 2p

maxt
p−1

∫ t

0
|θ(s)|2p

L2 ds.

From the above energy estimates, we know if |u(0)|2
L2 +C1|θ(0)|2L2 <C0,

then there exists a constant Cp(C0) so that E|u(t)|2p
L2 +C1E|θ(t)|2p

L2 �Cp for
all t�0 and p�1. Now define the events

Ak =
{

sup
s∈[0, k]

|Mu
s |> K1

2
(k+1)δ

}

and

Bk =
{

sup
s∈[0, k]

C1|Mθ
s |>

K1

2
(k+1)δ

}
.

By the Doob–Kolmogorov martingale inequality, we obtain

P{Ak}� 22p
E([Mu, Mu]t )p

K
2p
1 (k+1)2pδ

� σ
2p
maxCp

K
2p
1

22pkp

(k+1)2pδ
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and

P{Bk}� (2C1)
2p

E([Mθ, Mθ ]t )p

K
2p
1 (k+1)2pδ

� σ̃
2p
maxCp

K
2p
1

(2C1)
2pkp

(k+1)2pδ
.

Observe that

P

{
Mu
t � K1

2
tδ
}

�1−P {∪kAk}�1−
∑
k

P{Ak}

and

P

{
C1M

θ
t � K1

2
tδ
}

�1−P {∪kBk}�1−
∑
k

P{Bk}.

By the previous estimate on P{Ak} and P{Bk}, for any δ>1/2 we see that
the sum is finite for p sufficiently large. Lastly we note that

P

{
Mu
t � K1

2
tδ and C1M

θ
t � K1

2
tδ for t�0

}
� (1−

∑
k

P{Ak})(1−
∑
k

P{Bk}).

∑
P{Ak} and

∑
P{Bk} can be made arbitrary small by increasing K1. This

completes the proof.

Lemma 2.3. For any stationary measure, all energy moments are
finite. In fact for any p�1, there exists a constant Kp <∞ such that

∫
L2

|u|2p
L2 +C1|θ |2pL2 dµ(u, θ)<Kp

for all stationary measure µ and the constant C1 as in the energy esti-
mates. In particular, K1 = (Eu0 +C1Eθ0 )/(min{ν, κ}).

Proof. We will consider the case when p= 1. The other cases fol-
low by the same method. For any ε > 0, there exists a bε such that



942 Lee and Wu

µ{(u, θ) ∈ L
2 : |u|2

L2 + C1|θ |2L2 � bε} > 1 − ε. Let Bε denote {(u, θ) ∈ L
2 :

|u|2
L2 +C1|θ |2L2 �bε}. For any H >0 and t >0, we have

∫
L2
((|u|2

L2 +C1|θ |2L2)∧H)dµ(u, θ)

=
∫

L2
E((|φω0,t u|2L2 +C1|φω0,t θ |2L2)∧H)dµ(u, θ)

�Hε+
∫
Bε

E((|φω0, t u|2L2 +C1|φω0, t θ |2L2)∧H)dµ(u, θ)

�Hε+
∫
Bε

E(|φω0, t u|2L2 +C1|φω0, t θ |2L2)dµ(u, θ).

Applying the bound in energy estiamtes gives

∫
L2
((|u|2

L2 +C1|θ |2L2)∧H)dµ(u, θ)� Hε+ Eu0 +C1Eθ0
min{ν, κ}

+e−min{ν,κ}t
(
bε − Eu0 +C1Eθ0

min{ν, κ}

)
.

Taking the limit as t → ∞ and then observing that ε was arbitrary, we
obtain

∫
L2
((|u|2

L2 +C1|θ |2L2)∧H)dµ(u, θ)

�
Eu0 +C1Eθ0
min{ν, κ} .

Taking H→∞ gives that the energy of any stationary measure is bounded
by (Eu0 +C1Eθ0 )/min{ν, κ}. The argument for higher moments of the energy
is the same. This completes the proof.

Lemma 2.4. For any stationary measure µ, we have

νE

∫
L2

|�u(s)|2
L2 ds+κC1E

∫
L2

|∇θ(s)|2
L2 ds�Eu0 +C1Eθ0 .

Proof. From the energy inequality, we have for any initial condition
(u0, θ0)∈L

2,
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E|φ0, t u0|2L2 +C1E|φ0, t θ0|2L2

+νE
∫ t

0
|�φ0,su0|2L2 ds+κC1E

∫ t

0
|∇φ0, sθ0|2L2 ds

�E|u0|2L2 +C1E|θ0|2L2 + (Eu0 +C1Eθ0 )t.

Here we have switched the time integral and the expectation by the
Fubini–Tonelli theorem the integrand is nonnegative. Hence averaging
with respect to the stationary measure gives

∫
L2

E|φ0, t u0|2L2dµ(u0, θ0)+C1

∫
L2

E|φ0, t θ0|2L2 dµ(u0, θ0)

+ν
∫

L2

∫ t

0
E|�φ0, su0|2L2 ds dµ(u0, θ0)

+κC1

∫
L2

∫ t

0
E|∇φ0, sθ0|2L2 ds dµ(u0, θ0)

�E|u(0)|2
L2 +C1E|θ(0)|2

L2 + (Eu0 +C1Eθ0 )t.

Because µ was stationary measure, we have

∫
L2

E|φ0, t u0|2L2 dµ(u0, θ0)+
∫

L2
C1E|φ0, t θ0|2L2 dµ(u0, θ0)

=
∫

L2
|u0|2L2 +C1|θ0|2L2dµ(u0, θ0)

and

ν

∫
L2

∫ t

0
E|�φ0, su0|2L2 ds+κC1

∫
L2

∫ t

0
E|∇φ0, sθ0|2L2 ds

=νt
∫

L2
|�u0|2L2 dµ(u0, θ0)+κC1t

∫
L2

|∇θ0|2L2 dµ(u0, θ0).

This completes the proof.

Lemma 2.5. Let µp be the measure induced on C((−∞, 0], L
2)

by any given stationary measure µ. Fix any K0 > 0 and δ > 1/2. Then
for µp-almost every trajectory (u(s), θ(s)) in C((−∞, 0],L2), there exists
a constant T such that for s � 0, |u(s)|2

L2 + C1|θ(s)|2L2 � Eu0 + C1Eθ0 +
K0 min(T , |s|)δ.
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Proof. The basic energy estimate reads

|u(t)|2
L2 +C1|θ(t)|2L2 +ν

∫ t

t0

|�u(s)|2
L2 ds+κC1

∫ t

t0

|∇θ(s)|2
L2 ds

� |u(t0)|2L2 +C1|θ(t0)|2L2 + (Eu0 +C1Eθ0 )(t− t0)

+
∫ t

t0

〈u(s), dWu(s)〉L2 +C1

∫ t

t0

〈θ(s), dWθ(s)〉L2 .

For any t0 < t � 0, it can be shown that there is no problem writing the
integration against the Wiener path in the above integral (for details see
ref. 6). For any k�1, we have the following from the above inequality

sup
s∈[−k,−k+1]

|u(s)|2
L2 +C1 sup

s∈[−k,−k+1]
|θ(s)|2

L2

� |u(−k)|2
L2 +C1|θ(−k)|2L2 +Eu0 +C1Eθ0 + sup

s∈[−k,−k+1]
Fk(s),

where

Fk(s) = −ν
∫ s

−k
|�u(r)|2

L2 dr−κC1

∫ s

−k
|∇θ(r)|2

L2 dr+
∫ s

−k
〈u(r), dWu(r)〉L2

+C1

∫ s

−k
〈θ(r), dWθ(r)〉L2 .

Now define

Ak ={(u(s), θ(s)) : sup
s∈[−k,−k+1]

|u(s)|2
L2 + sup

s∈[−k,−k+1]
C1|θ(s)|2L2

�Eu0 +C1Eθ0 +K0|k−1|δ}

and UT = ∩k>T Ak. Since UT are an increasing collection of sets, it will
be sufficient to prove that limT→∞µp(UT ) = 1. Now since µp(U

c
T ) �∑

k>T µp(A
c
k), we need only to show that

∑
k>0µp(A

c
k)<∞. We have

µp(A
c
k)� µp{(u(s), θ(s)) : |u(−k)|2

L2 +C1|θ(−k)|2L2 � K0

2
|k−1|δ}

+µp{(u(s), θ(s)) : sup
s∈[−k,−k+1]

Fk(s)�
K0

2
|k−1|δ}.
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For the first term of the above inequality, Chebyshev’s inequality and
Lemma 2.3 produce

µp{(u(s), θ(s)) : |u(−k)|2
L2 +C1|θ(−k)|2L2 � K0

2
|k−1|δ}

� 16

K2
0 |k−1|2δ (E|u(−k)|4

L2 +C2
1E|θ(−k)|4

L2)

� 16C

K2
0 |k−1|2δ ,

which is summable if δ>1/2.
For the second term, we control Fk(s) by estimating Mu

k (s)−α[Mu
k , M

u
k ](s)

and Mθ
k (s)−β[Mθ

k , M
θ
k ](s). We have

[Mu
k , M

u
k ](s) =

∫ s

−k

∑
l

|σl |2|ul(r)|2 dr� (σmax)
2
∫ s

−k
|u(r)|2

L2 dr

� (σmax)
2
∫ s

−k
|�u(r)|2

L2 dr

and

[Mθ
k , M

θ
k ](s) =

∫ s

−k

∑
l

|σ̃l |2|θl(r)|2L2 dr� (σ̃max)
2
∫ s

−k
|θ(r)|2

L2 dr

� (σ̃max)
2
∫ s

−k
|∇θ(r)|2

L2 dr.

Hence Fk(s)�Mu
k (s)+C1M

θ
k (s)− (2ν/(σmax)

2)[Mu
k , M

u
k ] − (2κC1/(σ̃max)

2)

[Mθ
k , M

θ
k ](s) almost surely. The exponential martingale inequality gives us

that

µp

{
(u(s), θ(s)) : sup

s∈[−k,−k+1]
Fk(s)�

K0

2
|k−1|δ

}

� exp
(

− 2νK0

(σmax)2
|k−1|δ

)
+ exp

(
− 2κK0

(σ̃max)2C1
|k−1|δ

)
.

Since this is summable for any δ>0, the proof is completed.
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3. PROOF OF THEOREM 1

Define two subspaces of L2

L2
�= span{ek, |k|�N}, L2

h= span{ek, |k|>N}

and two subspaces of L̃2

L̃2
�= span{ẽk, |k|�N}, L̃2

h= span{ẽk, |k|>N}.

We will call L2
� the set of low modes and L2

h the set of high modes. We
denote L

2
� =L2

� ⊕ L̃2
� and L

2
h=L2

h⊕ L̃2
h. We sometimes denote L̃2

� and L̃2
h

by L2
� and L2

h for simplicity. Obviously, L2 =L2
� ⊕L2

h. Denote by P� and
Ph the projections onto the low and high mode spaces. Since we are con-
cerned with stationary measure, we are interested in stationary solutions
of (1.2) that exists for time from −∞ to ∞. We will show in this section
that for such solutions, the high modes are completely determined by the
past history of the low modes. For this purpose, we have

d�u(t) = [−ν�2�u+P�B(�u, �u)]dt
+[P�B(�u, hu)+P�B(hu, �u)+P�B(hu, hu)]dt+σa(�θ )+dWu(t),

(3.1)

d�θ (t) = [κ��θ +P�(�u ·∇�θ )]dt
+[P�(�u ·∇hθ )+P�(hu ·∇�θ )+P�(hu ·∇hθ )]dt+dWθ(t), (3.2)

dhu(t)

dt
= [−ν�2hu+PhB(hu, hu)]

+[PhB(�u, hu)+PhB(hu, �u)+PhB(hu, hu)]+σa(hθ ) (3.3)

and

dhθ (t)

dt
= [κ�hθ +Ph(hu ·∇hθ )]

+[Ph(�u ·∇hθ )+Ph(hu ·∇�θ )+Ph(hu ·∇hθ )]. (3.4)

Define the set of nice pasts U ⊂ C((−∞, 0], L
2) to consist of all

(u, θ) : (−∞, 0]→L
2 such that

(i) u(t) and θ(t) are in H 1 for all t�0,

(ii) the energy averages correctly. More precisely,
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lim
t→−∞

ν

|t |
∫ 0

t

|�u(s)|2
L2 ds+ lim

t→−∞
κC1

|t |
∫ 0

t

|∇θ(s)|2
L2 ds�Eu0 +C1Eθ0 .

(iii) the energy fluctuations are typical. More precisely, there exists a
T =T (u) such that

|u(t)|2
L2 +C1|θ(t)|2L2 �Eu0 +C1Eθ0 +max(|t |, T )2/3.

Lemma 3.1. Let µp be the measure on C((−∞, 0], L
2) induced by

a stationary measure µ for (1.2). Then µp(U)=1.

Proof. In Section 2, we prove solutions of the Boussinesq equations
are in H 1 for all t . The fact that the last condition is satisfied by a set
of full measure is proved in Lemma 2.5. All that remains to show is (ii).
From Lemma 2.4, we have |�u|2

L2 , |∇θ |2
L2 ∈L1(µ) for any stationary mea-

sure µ and ν
∫ |�u|2

L2 dµ+κC1
∫ |∇θ |2

L2 dµ�Eu0 +C1Eθ0 . Since the measure
is invariant under shifts back in time, the ergodic theorem implies that
for µp-almost every trajectories time average converges to the average of
|�u|2

L2 and |∇θ |2
L2 .

By �s, t (�, h0), we mean the solution to (3.3) and (3.4) at time t given
the initial condition h0 at time s and the “forcing” �= (�u, �θ ). Denote
by P the set of all �∈C((−∞, 0], L

2
�) such that �=P�(u, θ) and h(t)=

�s, t (�, h(s)) for any s < t�0. From Lemma 3.1, P is not empty.

Lemma 3.2. Suppose there exists a positive sufficiently large con-
stant Ĉ= Ĉ(ν, κ) and N is so large that N2>Ĉ(Eu0 +C1Eθ0 ). If there exists
two solutions

(
u1
θ1

)
=
(
�u(t)+hu1(t)
�θ (t)+hθ1(t)

)
,

(
u2
θ2

)
=
(
�u(t)+hu2(t)
�θ (t)+hθ2(t)

)

corresponding to some realizations of the forcing and such that(
u1
θ1

)
,

(
u2
θ2

)
∈U,

then u1 =u2, θ1 = θ2, i.e., hu1 =hu2 and hθ1 =hθ2. Furthermore, given a solu-
tion (u(t), θ(t))∈U , any h0, and t�0 the following limit exists:

lim
t0→−∞ �t0, t (�, h0)=h∗

and h∗ =h(t).
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Proof. Denote by ρu(t)=hu1(t)−hu2(t) and ρθ (t)=hθ1(t)−hθ2(t). We
have

dρu

dt
=−ν�2ρu+PhB(u1, ρ

u)+PhB(ρu, u2)+σa(ρθ )

and

dρθ

dt
=κ�ρθ +Ph(u1 ·∇ρθ )+Ph(ρu ·∇θ2).

Taking inner product with ρu and ρθ , respectively, and using the fact
that 〈PhB(u1, ρ

u), ρu〉L2 =〈PhB(u1, ρ
θ ), ρθ 〉L2 =0, and |a(ρθ )|L2 �C|ρθ |L2

gives

1
2
d

dt
(|ρu|2

L2 + Cσ 2

κν
|ρθ |2

L2)

�−ν|�ρu|2
L2 − Cσ 2

ν
|∇ρθ |2

L2 +〈PhB(ρu, u2), ρ
u〉L2

+Cσ
2

κν
〈Ph(ρu ·∇θ2), ρ

θ 〉L2 +σ 〈a(ρθ ), ρu〉L2

�−ν
4
|�ρu|2

L2 − Cσ 2

4ν
|∇ρθ |2

L2 + C

2ν
|ρu|2

L2 |�u2|2L2

+Cσ
4

κ2ν4
|ρθ |2

L2 |∇θ2|2L2 + Cσ 2

κν
|ρu|2

L2 |∇θ2|2L2 .

Since ρ contains only the modes with |k| > N , the Poincare inequality
implies that

d

dt

(
|ρu|2

L2 + Cσ 2

κν
|ρθ |2

L2

)

�
(

−min
(ν

4
,
κ

4

)
N2 + C

ν
|�u2|2L2 +Cσ

2(1+ν2)

κν3
|∇θ2|2L2

)

×
(

|ρu|2
L2 + Cσ 2

κν
|ρθ |2

L2

)
.



Ergodicity for the Dissipative Boussinesq Equations 949

For t0<t <0, we have

(
|ρu(t)|2

L2 + Cσ 2

κν
|ρθ (t)|2

L2

)

�
(

|ρu(t0)|2L2 + Cσ 2

κν
|ρθ (t0)|2L2

)

× exp
{
−min

(ν
4
,
κ

4

)
N2(t− t0)+ C

ν

∫ t

t0

|�u2(s)|2L2 ds

+Cσ
2(1+ν2)

κν3

∫ t

t0

|∇θ2(s)|2L2 ds

}
.

Note that we can choose Ĉ so large that the exponent is negative. For con-
creteness, we can choose Ĉ satisfying

Ĉ >
4
(

1
ν
+ 1
κC1

)(
C
ν

+ Cσ 2(1+ν2)

κν3

)
min

(
ν
4 ,

κ
4

) .

From the property (ii) of paths in U , we obtain for t < T1 and for some
positive constant γ ,

−min
(ν

4
,
κ

4

)
N2(t− t0)+ C

ν

∫ t

t0

|�u2(s)|2L2 ds

+Cσ
2(1+ν2)

κν3

∫ t

t0

|�θ2(s)|2L2 ds�−γ
2
(t− t0).

From the property (iii) of the paths in U , we have |ρu(t)|L2 , |ρθ (t)|L2 →0
as t0 →−∞. For the second part of Lemma 3.2, proceed as before letting
the given solution u(t) and θ(t) play the same role of u2(t) and θ2(t) and
the solution to (3.3) and (3.4) starting from hu0 and hθ0 play the role of u1
and θ1, respectively. Hence we have
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(
|ρu(t)|2

L2 + Cσ 2

κν
|ρθ (t)|2

L2

)

�
(

|hu(t0)−hu0 |2
L2 + Cσ 2

κν
|hθ (t0)−hθ0|2L2

)

× exp
{
−min

(ν
4
,
κ

4

)
N2(t− t0)

+C
ν

∫ t

t0

|�u(s)|2
L2ds+C

σ 2(1+ν2)

κν3

∫ t

t0

|∇θ(s)|2
L2 ds

}
.

The same reasoning as before produces ρu(t) and ρθ (t) go to zero as
t0 →−∞. Therefore, it completes the proof of lemma.

We reduce the dynamics of the Navier–Stokes equations to the
dynamics of a finite-dimensional set of low modes with memory. The
reduced dynamics is no longer Markovian but rather Gibbsian. Let A be
a cylinder set of the type: For some t0, t1, . . . , tn, t0<t1< · · ·<tn�0.

A=
{(

u(s)

θ(s)

)
∈C((−∞, 0], L

2),

(
u(ti)

θ(ti)

)
∈Ai, i=0, . . . , n

}
,

where Ai ’s are Borel sets of L2.

B=
{
(y,ω), y=

(
u

θ

)
∈A0, φ

ω
t0,t1

y ∈Ai, i=0, ..., n
}
.

We define µp(A)= (P×µ)(B) where P×µ is the product measure on 
×
L

2 and

ψωt

(
u

θ

)
(s)=φωs

(
u

θ

)
(0) for s ∈ [0, t ]

and

ψωt

(
u

θ

)
(s)=

(
u

θ

)
(s) for s�0.

Because of Lemma 3.2, we can define a map �0 = (�u0, �θ0), which recon-
structs the high modes of the solution at time zero from given low mode
trajectories stretching from zero back to −∞. In this notation hu(0)=
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�u0(L
0
u) and hθ (0)=�θ0(L0

θ ) where L0
u and L0

θ are some low mode past in
P . Define

�t(L
t )=�t

(
Ltu
Ltθ

)
=
(
�ut (L

t
u, �

u
0(L

0
u))

�θt (L
t
θ , �

θ
0(L

0
θ ))

)
,

�= (�u, �θ ), and h= (hu, hθ ).

Now given any initial low mode past of L0 ∈P , we can solve the future of
�u using the Gibbsian dynamics

d�u(t)= [−ν�2�u+P�B(�u, �u)+σa(�θ )+G1(�
u(t),�ut (L

t
u))]dt+dWu(t),

d�θ (t)= [κ��θ +P�(�u ·∇�θ )+G2(�, �t (L
t ))]dt+dWθ(t), (3.5)

where G1(�
u, hu)=P�B(�u, hu)+P�B(hu, �u)+P�B(hu, hu) and G2(�, h)=

P�(�
u ·∇hθ )+P�(hu ·∇�θ )+P�(hu ·∇hθ ). We also let Qt(L

0, ·) be the mea-
sure induced on C([0, t ], L

2
�) by the dynamics starting from L0. Let µ be

an ergodic stationary measure and define Lsi =Sωi L0
i and �i(s)=Lti(s) for

s� t . Set hi(s)=�s(Lsi ) and ui(s)= (�i(s), hi(s)). We define the sets

Ai(K) = { �f ∈C([0, ∞),L2
�) :

|u(t)|2
L2 +C1|θ(t)|2L2 +ν

∫ t

0
|�u(s)|2

L2 ds+κC1

∫ t

0
|∇θ(s)|2

L2 ds

<C0 + (Eu0 +C1Eθ0 )t+Kt4/5,
where (u(s), θ(s))= �f (s)+�s( �f , hi)}.

We set A(K)=A1(K)∩A2(K). By Lemma 2.2, we know that for any a ∈
(0, 1) there exists a K such that

P{ω : Sωt L
0
i ∈Ai(K)}>1− a

2
for i=1, 2

and hence P{ω : Sωt L
0
i ∈A(K) for i= 1,2}> 1 − a > 0. This is just another

way of saying Q∞(L0
i , A(K))>1−a.

Lemma 3.3. Let L0
1 and L0

2 be two initial pasts in P such that
L0

1(0) = L0
2(0). Let A(K) ⊂ C([0, ∞), L

2
�) be as defined above. For any

choice of K>0, Q∞(L0
1, ·∩A(K)) is equivalent to Q∞(L0

2, ·∩A(K)).
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Proof. We consider the following truncated process y, z which will
agree with � on the set A=A(K):

dyi(t)= [−ν�2yi(t)+P�B(yi(t), yi(t))+σa(zi)
+�t(Y ti , Zti )G1(yi(t), �

u
t (Y

t
i , h

u
i (0)))]dt+dWu(t),

dzi(t)= [κ�zi(t)+P�(yi ·∇zi)
+�t(Y ti , Zti )G2(y(t), �t (Y

t
i ,Z

t
i , hi(0)))]dt+dWθ(t),

yi(0)= �ui (0), zi(0)=�θi (0),

where (hui (0), h
θ
i (0))=�t(L0

i ),

�t(f, g)=
{

1 if (f, g)∈A|[0, t ],
0 if (f, g) /∈A|[0, t ]

and A|[0, T ] is the low mode paths which agree with a path in A up to
time T . Recall that �t((Y ti , Z

t
i ), hi(0)) is the solution to with �= (Y, Z)

and h(0)=hi(0). Let Qy,z
∞ (L0

1, ·) and Qy,z
∞ (L0

2, ·) be the measures induced
by (Y1, Z1) and (Y2, Z2), respectively. If applicable, Girsanov’s theorem
would imply that these measure are equivalent, that is Qy,z

∞ (L0
1, ·) and

Q
y,z
∞ (L0

2, ·) be the measures induced by (Y1, Z1) and (Y2, Z2), respectively.
If applicable, Girsanov’s theorem would imply that these measures are
equivalent, that is, Qy,z

∞ (L0
1, ·)≡Q

y,z
∞ (L0

2, ·). For Girsanov’s theorem to
apply

E exp
{∫ ∞

0
|�−1�t(Y

t
1,Z

t
1)D(�a, �b, �c)|2 dt

}
<∞,

where

�a=
(
y1(t)

z1(t)

)
, �b=

(
�ut (Y

t
1, h

u
1(0))

�θt (Z
t
1, h

θ
1(0))

)
, �c=

(
�ut (Y

t
2, h

u
2(0))

�θt (Z
t
2, h

θ
2(0))

)

and

D

((
h1
h2

)
,

(
f1
g1

)
,

(
f2
g2

))

=
(
G1(h1, f1)−G1(h1, f2)

G2((h1, h2), (f1, g1))−G2((h1, h2), (f1, g1))

)
.

Also � is a 3×3 diagonal matrix with σk’s and σ̃k’s on its diagonal. Since
|�−1|<∞, it would be enough to show that
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sup
ω

∫ ∞

0
|�t(Y t1)D(�a, �b, �c)|2 dt <∞,

where �a, �b, �c are defined as above and �i(s) = (�ui (s), �
θ
i (s)), hi(s) =

(hui (s), h
θ
i (s)). Putting hi(s) = �s((Y

s
i , Z

s
i ), hi(0)), (ui(s), θi(s)) = �i(s) +

hi(s), ρ(s)=h1(s)−h2(s) and using estimates for the nonlinear terms (see
ref. 5), we obtain

|D(�1(s), h1(s), h2(s))|2L2 � C|ρu(s)|2
L2 [|u1(s)|2L2 +|u2(s)|2L2 ]

+C|ρu(s)|2
L2 [|θ1(s)|2L2 +|θ2|2L2 ]

+C|ρθ (s)|2
L2 [|u1(s)|2L2 +|u2(s)|2L2 ].

Notice that if �i ∈A|[0, T ] then for all t ∈ [0, T ] and some positive constant
C, we have

|ui(s)|2L2 , |θi(s)|2L2 �C(C0 + (Eu0 +C1Eθ0 )t+Kt4/5),

∫ t

0
|�ui(s)|2L2 ds,

∫ t

0
|∇θi(s)|2L2 ds�C(C0 + (Eu0 +C1Eθ0 )t+Kt4/5).

As in the proof of Lemma 3.2, using above estimates produces

(
|ρu(t)|2

L2 + Cσ 2

κν
|ρθ (t)|2

L2

)

�
(

|ρu(0)|2
L2 + Cσ 2

κν
|ρθ (0)|2

L2

)

× exp
{
−min

(ν
4
,
κ

4

)
N2t+ C

ν

∫ t

0
|�u2(s)|2L2ds

+Cσ
2(1+ν2)

κν3

∫ t

0
|∇θ2(s)|2L2ds

}

�C0 exp

{
−min

(ν
4
,
κ

4

)
N2t+C

(
1
ν

+ σ 2(1+ν2)

κν3

)

× (C0 + (Eu0 +C1Eθ0 )t+Kt
4
5 )
}
.

Since by assumption N2>Ĉ(Eu0 +C1Eθ0 )(we can choose Ĉ to be sufficiently
large), hence the estimate on the right hand side of decays exponentially
fast. This completes the proof.
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For the next step, we need to control high modes by the low modes
as the following.

Lemma 3.4. If hu(t) and hθ (t) are the solutions to (3.3), (3.4) with
some low mode forcing �u, �θ ∈ C([0, t ], L2

�), then sups∈[0,t ] |hu(s)|L2 +
sups∈[0,t ] |hθ (s)|L2 is bounded by a constant depending on |hu(0)|L2 ,
|hθ (0)|L2 ,

∫ t
0 |�u|4

L2 ds and
∫ t

0 |�θ |4
L2 ds.

Proof. Taking the inner product with hu and hθ , respectively, pro-
duces

1
2
d

dt
|hu(t)|2

L2 = −ν|�hu(t)|2
L2 +〈PhB(hu, �u), hu〉L2

+〈PhB(�u, �u), hu〉L2 +〈σa(hθ ), hu〉L2

and

1
2
d

dt
|hθ (t)|2

L2 = −κ|∇hθ |L2 +〈Ph(hu ·∇�θ ), hθ 〉L2

+〈Ph(�u ·∇�θ ), hθ 〉L2 .

We remark that (see ref. 5)

|〈PhB(�u, �u), hu〉L2 | � C|�hu|L2 |��u|2
L2 ,

|〈PhB(hu, �u), hu〉L2 | � C|�hu|L2 |hu|L2 |��u|L2 ,

|〈Ph(hu ·∇�θ ), hθ 〉L2 | � C|�hu|L2 |∇2�θ |L2 |hθ |L2 ,

|〈Ph(�u ·∇�θ ), hθ 〉L2 | � C|�hθ |L2 |∇�θ |L2 |��u|L2

and

| 〈σa(hθ ), hu〉L2 | � ν

2
|hu|2

L2 + Cσ 2

2ν
|hθ |2

L2

Using the above inequalities, we have

1
2
d

dt

(
|hu(t)|2

L2 + Cσ 2

κν
|hθ (t)|2

L2

)
�−ν

2
|�hu|2

L2 +C|�hu|L2 |hu|L2 |��u|L2 +C|�hu|L2 |��u|2
L2

−Cσ
2

2ν
|∇hθ |2

L2 +C|�hu|L2 |∇2�θ |L2 |hθ |L2 +C|�hθ |L2 |∇�θ |L2 |��u|L2

�C|hu|2
L2 |��u|2L2 +C|��u|4

L2 +C|hθ |2
L2 |∇2�θ |2

L2 +C|∇�θ |4
L2 .
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Since �u, �θ ∈L2
�, we have |��u|L2 �(N+)|�u|L2 and |∇2�θ |L2 �(N+)2|�θ |L2 .

Using Gronwall’s lemma, we have

|hu(t)|2
L2 + σ 2

κν
|hθ (t)|2

L2

�C1(|hu(0)|2L2 + σ 2

κν
|hθ (0)|2

L2) exp
(
C3

∫ t

0
|�u|2

L2ds+C4

∫ t

0
|�θ |2

L2 ds

)

+C2

(∫ t

0
|�u|4

L2 ds+
∫ t

0
|�θ |4

L2 ds

)

× exp
(
C3

∫ t

0
|�u|2

L2ds+C4

∫ t

0
|�θ |2

L2ds

)
,

for some constants C1, C2, C3 and C4.

Fix L∈ P . We consider the following ODEs for comparing the pro-
cess l(t) to the associated Galerkin approximation living on L

2
l which we

will denote by x(t). Take x(t), y(t) as the solution defined by the follow-
ing stochastic ODEs.

dx(t)= [−ν�2x+P�B(x, x)+σa(y)]dt+dWu(t),

dy(t)= [κ�y+P�(x ·∇y)]dt+dWθ(t),

x(0)=�u(0), y(0)=�θ (0).

We do not compare x(t), y(t) directly to �u(t), �θ (t) but instead to a mod-
ified version of �u(t), �θ (t), which will be denoted by z1(t) and z2(t).

dz1(t) = [−ν�2z1 +P�B(z1, z1)+σa(z2)+�t(Zt )G1(z1, �
u
t (Z

t
1, h

u
0))]dt

+dWu(t),

dz2(t) = [κ�z2 +P�(z1 ·∇z2)+�t(Zt )G2(z2, �t (Z
t , h0))]dt+dWθ(t),

z1(0) = �u(0), z2(0)=�θ (0),

where Zt = (Zt1, Zt2), hu0 =�u0(L) and hθ0 =�θ0(L). For any fixed b0>1, we
define

�s(Z
s)=

{
1 if

∫ s
0 |Zs(r)|4

L2 dr <(b0C0)
4T ,

0 otherwise.

For any B⊂L
2
�, define

[B]={(u, θ)∈C([0, t ], L
2
�) : (u(t), θ(t))∈B}.
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Then Rt(L(0), B)=Qt(L, [B]). Letting Qx,y
t (L(0), ·) and Qz

t (L, ·) be the
two measures induced on C([0, t ],L2

�) by the dynamics of x and z, respec-
tively.

Lemma 3.5. Fix any b0>1. Then for any L0 ∈P , Rt(L0, ·) is equiv-
alent to the Lebesgue measure m(·).

For any µ, let P�µ be its projection to the low mode space, i.e.
(P�µ)(B)=µ(P−1

� (B)). Then we have the following direct consequence of
Lemma 3.5.

Corollary 3.6. If µ is an ergodic invariant measure then P�µ has a
component which is equivalent to the Lebesgue measure.

Proof of Lemma 3.5. Let Q
x,y
t (L0, ·) and Q�

t (L
0, ·) be the two

measures induced on C([0, t ], L
2
�) by the dynamics of (x, y) and �, respec-

tively. Observe that z(t)= �(t) as long as the trajectories stay in AT , the
Girsanov theorem will imply Q

x,y
t (L0, AT ) is equivalent to Q�

t (L
0, AT )

for 0� t�T if the following Novikov condition holds:

E exp
{

1
2

∫ t

0
|�−1�s(Z

s)|2|G(z(s), �s(z(s), �s(Zs, h0))|2L2ds

}
<∞,

where

G(�a, �b)=G
((

a1
a2

)
,

(
b1
b2

))
=
(
G1(a1, b1)

G2(�a, �b)
)
.

We will prove the stronger condition

sup
z(·)∈AT

∫ t

0
|G(z(s), �s(Zs, h0))|2L2 ds <∞.

We obtain the following estimate on G(see ref. 6):

|G(z(s), �s(Zs, h0))|2L2 �C′[|z(s)|2
L2 |h(s)|2L2 +|h(s)|4

L2 ],

where h(s)=�s(Zs, h0). We note that

|z(s)|2
L2 � |z1(s)|2L2 +|z2(s)|2L2 , |h(s)|2

L2 � |hu(s)|2
L2 +|hθ (s)|2

L2 .
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By Lemma 3.4, we know that if z is in A, then we know that

sup
s∈[0, t ]

|h(t)|2
L2 � sup |hu(t)|2

L2 + sup |hθ (t)|2
L2 �C2(|h0|L2 , b0, C0, T ).

Hence for any z∈AT , we have

∫ t

0
|G(z(s), �s(Zs, h0))|2L2 ds

�C′
∫ t

0
[|z(s)|2

L2 |h(s)|2L2 +|h(s)|4
L2 ]ds

�C′
(∫ t

0
|z(s)|4

L2ds

)1/2(∫ t

0
|h(s)|4

L2 ds

)1/2

+C′C4
2 t

�C′(b0C0)
2T 1/2C2

2 t
1/2 +C′C4

2 t.

Hence Novikov’s condition holds and the lemma is proved.

Proof of Theorem 1. The proof is the same as the proof of refs. 6
and 11. We just provide the sketch of the proof. For two different ergo-
dic stationary measure µ1, µ2, we can extend them to µ1,p and µ2,p
onto the path space P . We can find a functional F defined as above such
that

∫
F(L)dµ1,p(L) �= ∫

F(L)dµ2,p(L) Using Fubini’s theorem, we can
find a set Ai such that µi,p(P i (�)|�)= 1 for all � ∈ Ai and P�µi(Ai)=
1. Define A=A1 ∩A2. By Corollary 3.6, there exists some �∗ ∈A. Thus
there exist L∗,1 ∈ P1(�∗) and L∗,2 ∈ P2(�∗). By Lemma 3.3, Q∞(L∗,1, ·)
and Q∞(L∗,2, ·) are equivalent. Hence we can find Bi⊂C([0, ∞),L2) such
that the time average of F converges to F̄i for all futures in Bi and
Q∞(L∗,i , Bi)= 1 for i= 1, 2. Since B1 ∩B2 is nonempty, this contradicts
the assumption. This completes the proof.

4. REGULARITY OF THE TRANSTION DENSITY IN THE CASE

OF GALERKIN TRUNCATION

In the following, we denote the vector-valued index by g, h, k–n,
and the scalar-valued index by i, j . In this part, we consider the finite
dimensional Galerkin approximations of the three-dimensional reactive
Boussinesq equations with degenerate stochastical forcing. in the domain
T

3, with periodic boundary conditions as stated in the Section 1.



958 Lee and Wu

duk = [−ν|k|2uk − i
∑

(k ·uh)(ul − k ·ul
|k|2 k) (4.1)

−σ(θ̃k − k · θ̃k
|k|2 k)]dt+qukdβ

k
ut ,

dθk = [−κ|k|2θk − i
∑

(k ·uh)θl ]dt+qθk dβkθt , (4.2)

where the sum is over h, l ∈KN and h+ l=k.
We set uk = (r

j
k + is

j
k ), θk = r̃k + is̃k, and θ̃k = �rk + i�sk = (0, 0, r̃k)T +

i(0, 0, s̃k)T , where k · rk = k · sk = 0 and r
j
k , sjk , r̃k, and s̃k are real-valued.

Let quk = qruk + iqsuk and qθk = qrθk + iqsθk. Since u−k = ūk and θ−k = θ̄k, we
only need to consider a smaller set of indices k∈KN . We set

K1
N = {k∈Z

3| |k|∞ �N, k3>0},
K2
N = {k∈Z

3| |k|∞ �N, k3 =0, k2>0},
K3
N = {k∈Z

3| |k|∞ �N, k3 =k2 =0, k1>0}

and K̃ = K1
N ∪ K2

N ∪ K3
N in such a way that KN = K̃ ∪ (−K̃) and

K̃∩ (−K̃)=φ. Notice that number of the elements of K̃= (1/2)[(2N+1)3 −
1], we call such number D. Now if k ∈ K̃, we can write∑

h+ l=k
h, l ∈KN

=
∑

h+ l=k
h, l ∈ K̃

+
∑

h− l=k
h, l ∈ K̃

+
∑

l−h=k
h, l ∈−K̃.

We denote by
∑∗ the sum when indices in K̃.

So we have

duk + [ν|k|2uk + i
∗∑

h+l=k
(k ·uh)(ul − k ·ul

|k|2 k)+ i
∗∑

h−l=k
(k ·uh)(ūl − k · ūl

|k|2 k)

+i
∗∑

l−h=k
(k · ūh)(ul − k ·ul

|k|2 k)+σ(θ̃k − k · θ̃k
|k|2 k)]dt=quk dβ

k
ut

and

dθk + [κ|k|2θk + i
∗∑

h+l=k
(k ·uh)θl + i

∗∑
h−l=k

(k ·uh)θ̄l

+i
∗∑

l−h=k
(k · ūh)θl ]dt=qθk dβkθt .
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By splitting into the real part and imaginary part, we obtain

drk +
[
ν|k|2rk −

∗∑
h+l=k

(k · rh)(sl − k · sl
|k|2 k)+ (k · sh)(rl − k · rl

|k|2 k)

+
∗∑

h−l=k
(k · rh)(sl − k · sl

|k|2 k)− (k · sh)(rl − k · rl
|k|2 k)

−
∗∑

l−h=k
(k · rh)(sl − k · sl

|k|2 k)− (k · sh)(rl − k · rl
|k|2 k)

+σ
(

�rk − k · �rk
|k|2 k

)]
dt=qruk dβkut

and

dsk +
[
ν|k|2sk +

∗∑
h+l=k

(k · rl)(rl − k · rl
|k|2 k)− (k · sh)(sl − k · sl

|k|2 k)

+
∗∑

h−l=k
(k · rl)(rl − k · rl

|k|2 k)+ (k · sh)(sl − k · sl
|k|2 k)

+
∗∑

l−h=k
(k · rh)(rl − k · rl

|k|2 k)+ (k · sh)(sl − k · sl
|k|2 k)

+σ
(

�sk − k · �sk
|k|2 k

)]
dt=qsuk dβkut ,

dr̃k + [κ|k|2r̃k −
∗∑

h+l=k
(k · rh)s̃l + (k · sh)r̃l +

∗∑
h−l=k

(k · rh)s̃l − (k · sh)r̃l

−
∗∑

l−h=k
(k · rh)s̃l − (k · sh)r̃l ]dt=qrθk dβkθt

and

ds̃k + [κ|k|2s̃k +
∗∑

h+l=k
(k · rh)r̃l − (k · sh)s̃l

+
∗∑

h−l=k
(k · rh)r̃l + (k · sh)s̃l

+
∗∑

l−h=k
(k · rh)r̃l + (k · sh)s̃l ]dt=qsθk dβkθt .
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We let

Frik
= −ν|k|2rik +

∗∑
h+l=k

(k · rh)(sil −
k · sl
|k|2 ki)+ (k · sh)(ril −

k · rl
|k|2 ki)

−
∗∑

h−l=k
(k · rh)(sil −

k · sl
|k|2 ki)− (k · sh)(ril −

k · rl
|k|2 ki)

+
∗∑

l−h=k
(k · rh)(sil −

k · sl
|k|2 ki)− (k · sh)(ril −

k · rl
|k|2 ki)+σδi3r̃k,

Fsik
= −ν|k|2sik −

∗∑
h+l=k

(k · rh)(ril −
k · rl
|k|2 ki)− (k · sh)(sil −

k · sl
|k|2 ki)

−
∗∑

h−l=k
(k · rh)(ril −

k · rl
|k|2 ki)+ (k · sh)(sil −

k · sl
|k|2 ki)

−
∗∑

l−h=k
(k · rh)(ril −

k · rl
|k|2 ki)+ (k · sh)(sil −

k · sl
|k|2 ki)+σδi3s̃k,

F̃r̃k = −κ|k|2r̃k +
∗∑

h+l=k
(k · rh)s̃l + (k · sh)r̃l

−
∗∑

h−l=k
(k · rh)s̃l − (k · sh)r̃l

+
∗∑

l−h=k
(k · rh)s̃l − (k · sh)r̃l ,

F̃s̃k = −κ|k|2s̃k −
∗∑

h+l=k
(k · rh)r̃l − (k · sh)s̃l

−
∗∑

h−l=k
(k · rh)r̃l + (k · sh)s̃l

−
∗∑

l−h=k
(k · rh)r̃l + (k · sh)s̃l .

The solutions (r(t), r̃(t), s(t), s̃(t)) of our equations is a Markov pro-
cess whose state space is a linear subspace U of R

8D, where D=#K̃. We
can write U =⊕

k∈K̃(Rk ⊕ R̃k ⊕Sk ⊕ S̃k) , where (in the below h �=k)
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Rk = {(r, r̃, s, s̃)∈R
8D|rk ·k= r̃k = sk = s̃k = rh= r̃h= sh= s̃h=0},

Sk = {(r, r̃, s, s̃)∈R
8D|sk ·k= rk = r̃k = s̃k = rh= r̃h= sh= s̃h=0},

R̃k = {(r, r̃, s, s̃)∈R
8D| rk = sk = s̃k =0, rh= r̃h= sh= s̃h=0},

S̃k = {(r, r̃, s, s̃)∈R
8D| rk = r̃k = sk =0, rh= r̃h= sh= s̃h=0}.

Then we define the Lie algebra U corresponding to the state space U
of the solution process as

U =
{
G|G=

∑
k∈K̃

Grki

∂

∂rik

+ G̃r̃k
∂

∂r̃k
+Gsik

∂

∂sik

+ G̃s̃k
∂

∂s̃k

and k ·Grik =k ·Gsik =0
}
.

We define also the subspaces Uk=Rk⊕R̃k⊕Gk⊕ G̃k of U of constant
vector fields, where

Rk =


∑

i=1,2,3

rik
∂

∂rik

|rk ·k=0


 , Gk =



∑

i=1,2,3

sik
∂

∂sik

|sk ·k=0


 ,

R̃k =
{
r̃k
∂

∂r̃k

}
, and G̃k =

{
s̃k
∂

∂s̃k

}
.

We wish to find the reasonable conditions on the set N of forced modes
in such a way that the algebra generated by the fields {F0} ∪ Uk, k ∈ N ,

where F0 =∑
k∈K̃, i=1,2,3 Frik

∂

∂rik
+Fsik

∂

∂sik
+ F̃r̃k ∂

∂r̃k
+ F̃s̃k ∂

∂s̃k
, contains all the

constant vector fields of U . So the generated Lie algebra if evaluated at
each point of U gives U itself and we obtain the desired hypoelliptic prop-
erty. As indicated in Section 1, we reduced the proof of the uniqueness
of the invariant measure to two parts. The irreducibiblity is proved in the
next section. In this section, we prove the transition probability densities
are regular, i.e., strongly Feller. To show the strongly Feller property of the
Galerkin approximations of three-dimensional Boussinesq equations, we
use the Hörmander’s Theorem. Thus we need to compute the Lie bracket
of the form [[F0, V ],W ] for general constant vector field V and W . The
following lemma can be obtained from the direct computations.

Lemma 4.1. Let m, n∈ K̃ and V ∈Um, W ∈Un, with

V =
3∑
j=1

(
vrj

∂

∂r
j
m

+vsj
∂

∂s
j
m

)
+ ṽr ∂

∂r̃m
+ ṽs ∂

∂s̃m
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and

W =
3∑
j=1

(
wrj

∂

∂r
j
n

+wsj
∂

∂s
j
n

)
+ w̃r ∂

∂r̃n
+ w̃s ∂

∂s̃n
.

If k=m+n, h=n−m, and g=m−n, then

[[F0, V ],W ]

= [(vr ·k)Pk(ws)+ (ws ·k)Pk(vr)+ (vs ·k)Pk(wr)+ (wr ·k)Pk(vs)] · ∂
∂rk

+[(vs ·k)Pk(ws)+ (ws ·k)Pk(vs)− (vr ·k)Pk(wr)− (wr ·k)Pk(vr)] · ∂
∂sk

+[(vr ·h)Ph(ws)+ (ws ·h)Ph(vr)− (vs ·h)Ph(wr)− (wr ·h)Ph(vs)] · ∂

∂rh

−[(vr ·h)Pg(wr)+ (wr ·h)Ph(vr)+ (vs ·h)Ph(ws)+ (ws ·h)Ph(vs)] · ∂

∂sh

+[(vs ·g)Pg(wr)+ (wr ·g)Pg(vs)− (vr ·g)Pg(ws)− (ws ·g)Pg(vr)] · ∂

∂rg

−[(vr ·g)Pg(wr)+ (wr ·g)Pg(vr)+ (vs ·g)Pg(ws)+ (ws ·g)Pg(vs)] · ∂

∂sg

+[(ws ·k)ṽr + (wr ·k)ṽs + (vr ·k)w̃s + (vs ·k)w̃r ] ∂
∂r̃k

+[(ws ·h)ṽr − (wr ·h)ṽs + (vr ·h)w̃s − (vs ·h)w̃r ] ∂
∂r̃h

+[−(ws ·g)ṽr + (wr ·g)ṽs − (vr ·g)w̃s + (vs ·g)w̃r ] ∂
∂r̃g

+[−(wr ·k)ṽr − (vr ·k)w̃r + (ws ·k)ṽs + (vs ·k)w̃s ] ∂
∂s̃k

−[(wr ·h)ṽr + (vr ·h)w̃r + (ws ·h)ṽs + (vs ·h)w̃s ] ∂
∂s̃h

−[(wr ·g)ṽr + (vr ·g)w̃r + (ws ·g)ṽs + (vs ·g)w̃s ] ∂
∂s̃g

,

where Pk is the projection of R
3 on the plane orthogonal to the vector k,

and in the above formula the terms corresponding to indices out of K̃ are
zero.
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Proof. We compute the derivatives of the components of F0

∂Frik

∂r
j
m

= −ν|k|2δij δkm+kj (sik−m− sim−k + sim+k)

+k · (sk−m− sm−k + sk+m)
(
δij − 2kikj

|k|2
)
,

∂Fsik

∂r
j
m

= kj (r
i
k−m+ rim−k − rim+k)+k · (rk−m+ rm−k − rm+k)

(
δij − 2kikj

|k|2
)
,

∂Fsik

∂r
j
m

= −kj (rik−m+ rim−k + rim+k)−k · (rk−m+ rm−k + rm+k)
(
δij − 2kikj

|k|2
)
,

∂Fsik

∂s
j
m

= −ν|k|2δij δkm+kj (sik−m− sim−k − sim+k)

+k · (sk−m− sm−k − sm+k)
(
δij − 2kikj

|k|2
)
,

∂F
r
j
k

∂r̃m
=
∂F

s
j
k

∂s̃m
=σδj3,

∂F
r
j
k

∂s̃m
=
∂F

s
j
k

∂r̃m
=0,

∂F̃r̃k

∂r̃m
= −κ|k|2δkm+k · (sk−m− sm−k + sm+k),

∂F̃r̃k

∂s̃m
= k · (rk−m+ rm−k − rm+k),

∂F̃s̃k

∂r̃m
= −k · (rk−m+ rm−k + rm+k),

∂F̃s̃k

∂s̃m
= −κ|k|2δkm+k · (sk−m− sm−k − sm+k),

∂F̃r̃k

∂r
j
m

= kj (s̃k−m− s̃m−k + s̃m+k),

∂F̃r̃k

∂s
j
m

= kj (r̃k−m+ r̃m−k − r̃m+k),

∂F̃s̃k

∂s
j
m

= kj (s̃k−m− s̃m−k − s̃m+k)
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and

∂F̃s̃k

∂r
j
m

=−kj (r̃k−m+ r̃m−k − r̃m+k),

Thus the nonvanishing second derivatives are the following(we set
Aijl(k)= δilkj + δij kl −2(kikj kl)/|k|2.)

∂2Frik

∂sln ∂r
j
m

= (δn,k−m− δn,m−k + δn,m+k)Aij,l(k),

∂2Fsik

∂rln ∂r
j
m

= −(δn,k−m+ δn,m−k + δn,m+k)Aij,l(k),

∂2Fsik

∂sln ∂s
j
m

= (δn,k−m− δn,m−k − δn,m+k)Aijl(k),

∂2F̃r̃k

∂r̃m ∂sln
= kl(δn,k−m− δn,m−k + δn,m+k),

∂2F̃r̃k

∂s̃m ∂rln
= kl(δn,k−m− δn,m−k + δn,m+k)

∂2 F̃s̃k

∂s̃n∂s
j
m

= kj (δn,k−m− δn,m−k − δn,m+k)

and

∂2F̃s̃k

∂r̃n ∂r
j
m

=−kj (δn,k−m+ δn,m−k + δn,m+k).

Computing the bracket produces

[[F0, V ], W ]

=
∑
k∈K̃

3∑
i,j,l=1

{(
vsjw

r
l

∂2 Frik

∂s
j
m ∂r

l
n

+vrjwsl
∂2 Frik

∂r
j
m ∂s

l
n

)
∂

∂rik

+
(
vrjw

r
l

∂2Fsik

∂r
j
m ∂r

l
n

+vsjwsl
∂2Fsik

∂s
j
m∂s

l
n

)
∂

∂sik

}
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+
∑
k∈K̃

3∑
j=1

{(
ṽrwsj

∂2F̃r̃k

∂r̃m ∂s
j
n

+vrj w̃s
∂2F̃r̃k

∂s̃n ∂r
j
m

+w̃rvsj
∂2F̃r̃k

∂r̃n ∂s
j
m

+ ṽswrj
∂2F̃r̃k

∂s̃m ∂r
j
n

)
∂

∂r̃k

+
(
ṽrwrj

∂2F̃s̃k

∂r̃m ∂r
j
n

+vrj w̃r
∂2F̃s̃k

∂r̃n ∂r
j
m

+ ṽswsj
∂2F̃s̃k

∂s̃m ∂s
j
n

+vsj w̃s
∂2F̃s̃k

∂s̃n ∂s
j
m

)
∂

∂s̃k

}
.

We analyze the coefficients of the ∂rik
and ∂sik

vsjw
r
l

∂2 Frik

∂s
j
m ∂r

l
n

+vrjwsl
∂2 Frik

∂r
j
m ∂s

l
n

= (δm,k−n− δm,n−k + δm,n+k)[(vs ·k)Pk(wr)i + (wr ·k)Pk(vs)i ]
+(δn,k−m− δn,m−k + δn,m+k)[(vr ·k)Pk(ws)i + (ws ·k)Pk(vr)i ],

vrjw
r
l

∂2 Fsik

∂r
j
m ∂

l
n

+vsjwsl
∂2 Fsik

∂s
j
m ∂s

l
n

=−(δn,k−m+ δn,m−k + δn,m+k)[(vr ·k)Pk(wr)i + (wr ·k)Pk(vs)i ]
+(δn,k−m− δn,m−k − δn,m+k)[(vs ·k)Pk(ws)i + (ws ·k)Pk(vr)i ],

where Pk(v)i = vi − (ki/|k|2)(v · k). We also analyze the coefficients of ∂r̃k
and ∂s̃k

coefficients of ∂r̃k
= [ṽr (ws ·k)+ ṽs(wr ·k)](δn,k−m− δn,m−k + δn,m+k)

+[w̃s(vr ·k)+ w̃s(vs ·k)](δm,k−n− δm,n−k + δm,n+k),

and

coefficients of ∂s̃k
=−w̃r (vr ·k)(δn,k−m+ δn,m−k + δn,m+k)

+w̃s(vs ·k)(δn,k−m− δn,m−k − δn,m+k)
−ṽr (wr ·k)(δm,k−n+ δm,n−k + δm,n+k)
+ṽs(ws ·k)(δm,k−n− δm,n−k − δm,n+k).

Thus this lemma is true.
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We define the set A(N ) of all the indices k ∈ KN such that the con-
stant vector fields corresponding to k if k ∈ K̃, −k if k ∈ −K̃, are in the
Lie algebra generated by the vector fields {F0}∪Uk, k ∈N . The following
lemma studies the algebraic structure of A(N ).

Lemma 4.2. Let N be a subset of indices and define the set A(N )

as above.

(i) If m∈A(N ), then also −m∈A(N ),

(ii) If m, n∈A(N ), m+n∈KN , m and n are linearly independent and
|m| �= |n|, then m+n∈A(N ),

(iii) If |m| = |n|, V ∈ Um, W ∈ Un, then the Lie bracket [[F0, V ], W ]
span the four dimensional subspace of Um+n.

Proof. (i) follows simply from the property that u−k= ūk and θ−k= θ̄k.
(ii) It is enough to prove that if m, n ∈A(N )∩ K̃ and k=m+n∈ K̃, then
k∈A(N ). Let

V r =
3∑
i=1

vi
∂

∂rim
+ ṽ ∂

∂r̃m
, V s =

3∑
i=1

vi
∂

∂sim
+ ṽ ∂

∂s̃m
,

Wr =
3∑
i=1

wi
∂

∂rin
+ w̃ ∂

∂r̃n
, Ws =

3∑
i=1

wi
∂

∂sin
+ w̃ ∂

∂s̃n
,

where v ·m=w ·n=0. By the previous lemma, we have

[[F0, V
r ], Ws ]+ [[F0, V

s ], Wr ]= 2((v ·k)Pk(w)+ (w ·k)Pk(v)) · ∂
∂rk

+2((w ·k)ṽ+ (v ·k)w̃) ∂
∂r̃k

and

[[F0, V
r ], Wr ]− [[F0, V

s ], Ws ]= 2((v ·k)Pk(w)+ (w ·k)Pk(v)) · ∂
∂sk

+2((w ·k)ṽ+ (v ·k)w̃) ∂
∂s̃k

Then let H, I ∈ R
3 such that {k,H, I } is a basis of R

3, where H, I ∈ R
3

span{x ∈ R
3|x · k = 0} and m, n are in the the spanning space of k, H.
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By the assumption on m, n, it is always possible to choose the coefficient
a1, b1, c1, a2, b2, c2 such that if

v=a1k+b1H + c1I, w=a2k+b2H + c2I,

then 2((v · k)Pkw+ (w · k)Pk(v)) can be any vector in the spanning space
of H, I and w ·m=v ·n=0. Then, obviously, since we can freely choose ṽ
and w̃, 2((w ·k)ṽ+ (v ·k)w̃) can be any number. Therefore, Uk is contained
in the Lie algebra generated by the vector fields {F0}∪Up, p∈N .
(iii) The proof follows from the similar argument in (ii).

If A(N )=KN is satisfied, i.e., Hörmander’s condition holds, then the
transition semigroup generated by (4.1) and (4.2) is strongly Feller, i.e., the
transition probability is regular.

Lemma 4.3. If N contains the three indices (1,0,0), (0,1,0), and
(0,0,1), then the transition probability densities of the solution process
are regular.

Proof. By iteratively using the previous lemma, we can show
A(N )=KN . For the details, see ref. 13.

5. RECURRENCE OF NEIGHBORHOODS OF THE ORIGIN

IN THE CASE OF GALERKIN TRUNCATION

In this section, we follow closely ref. 5. In the following, | · |L2 , | · |
L̃2 ,

and | · |
L2 are denoted by ‖ · ‖ for simplicity. Here we consider the Galer-

kin truncation of three-dimensional Boussinesq equations as stated in
the introduction with a degenerately stochastic forcing In the following if
the level of approximation play no explicit role, then we do not express the
level of the approximations. We wish to show that starting from any posi-
tion, the dynamics enters any neighborhood of the origin infinitely often.

We begin with two auxiliary lemmas and set all of the constants ν=
κ =σ = 1 for simplicity. For the general constant, we can obtain the esti-
mates as in the same way of the energy estimates. We define

B(c)=
{
g= (u, θ)T ∈L

2(T3) : ‖g‖=
(∫

T3
|g(x)|2 dx

)1/2

� c
}
.

Lemma 5.1. Let B0 =B(C0) and B1 =B(C1) be two arbitrary balls
about the origin and h be some positive constant. Then there exists a T0 =
T0(C0,C1)>0 so that for any T �T0 there is a p∗ with
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inf
(u0,θ0)∈B0

Pu0,θ0

{(
u(t)

θ(t)

)
∈B1 for all t ∈ [T ,T +h]

}
�p∗>0.

Proof. Define v(t)=u(t)− f̂ (t) and �(t)= θ(t)− ĝ(t), where f̂ (t)=
Wu(t)−Wu(0) and ĝ(t)=Wθ(t)−Wθ(0). We see that v(t) and �(t) satisfy

∂v

∂t
=�v−PN(u ·∇)(v+ f̂ )+�f̂ −


0

0
�+ ĝ


 , (5.1)

∂�

∂t
=��−PN(u ·∇)(�+ ĝ)+�ĝ. (5.2)

Taking L2 inner product of (5.1) and (5.2) with v and �, respectively, and
using the fact that ∇u=∇v+∇f̂ , we have

1
2
d

dt
‖v‖2 � −‖∇v‖2 +C‖∇u‖‖�f̂ ‖‖v‖+‖�f̂ ‖‖v‖+‖�‖‖v‖+‖ĝ‖‖v‖

� −5
8
‖∇v‖2 +C(‖v‖2 +‖∇f̂ ‖2 +1)‖�f̂ ‖2 +4‖�‖2 +4‖ĝ‖2

and

1
2
d

dt
‖�‖2 � −‖∇�‖2 +C‖∇u‖‖�ĝ‖‖�‖+‖�ĝ‖‖�‖

� −1
2
‖∇�‖2 +C(‖�‖2 +‖∇f̂ ‖2 +1)‖�ĝ‖2 + 1

128
‖∇v‖2.

In the above two inequalities, we use

C‖∇u‖‖�f̂ ‖‖v‖ � C‖∇v‖‖v‖‖�f̂ ‖+C‖v‖‖∇f̂ ‖‖�f̂ ‖
� 1

8
‖∇v‖2 +‖v‖2‖�f̂ ‖2 + 1

8
‖v‖2 +C‖∇f̂ ‖2‖�f̂ ‖2,

C‖�u‖‖�ĝ‖‖�‖ � C‖∇v‖‖�ĝ‖‖�‖+C‖∇f̂ ‖‖�ĝ‖‖�‖
� 1

128
‖∇v‖2 +C‖�‖2‖�ĝ‖2 + 1

2
‖�‖2 +C‖∇f̂ ‖2‖�ĝ‖2

and

‖�‖‖v‖� 1
16

‖v‖2 +4‖�‖2.

Multiplying 16 on the differential inequality on � and adding two differ-
ential inequalities on v and �, we obtain
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d

dt

(
1
2
‖v‖2 +8‖�‖2

)

�−
(

1
2

−C3‖�f̂ ‖2
)

‖v‖2 −
(

4−C4‖�ĝ‖2
)

‖�‖2

+C‖∇f̂ ‖2‖�f̂ ‖2 +C‖∇f̂ ‖2 ‖�ĝ‖2 +C‖�f̂ ‖2 +C‖�ĝ‖2.

Fix any δ>0 and define for any T >0


′(δ, T )=
{
k∈C([0, T +h];L

2(T3)) : sup
s∈[0,T ]

‖�k(s)‖�min
(
δ,

1
4C3

,
2
C4

)}
.

If (f̂ , ĝ)∈
′, then there exists a constant C5 so that

1
2
‖v(t)‖2 +8‖�(t)‖2 �

(
1
2
‖v(0)‖2 +8‖�(0)‖2

)
e−(1/2)t

+C5

(
min

(
δ,

1
4C3

,
2
C4

)2

+min
(
δ,

1
4C3

,
2
C4

)4
)
.

Hence if ‖(u(0), θ(0))‖<C0, then given any C1>0 there exists a T and a
δ such that ‖(v(T ), �(T ))‖< (C1/2). For sufficiently small δ, we assume
that ‖(f̂ (t), ĝ(t))‖<(C1/2) for t ∈ [T , T +h] if (f, g)∈
′. For appropriate
T and δ, we have ‖(u(t), θ(t))‖ �C1 for t ∈ [T , T + h]. Since for any T ∈
(0,∞) and δ0>0, 
′ is an open set in the supremum topology, we know
P{
′}>0. This completes the proof.

Lemma 5.2. If ‖u0‖2 + ‖θ0‖2 >C2 a.s. for some constant C, with
C2>Eu0 +Eθ0 , where Eu0 , Eθ0 are defined in the Section 1, then

P{τC(u0, θ0)� t}� E{‖u0‖2 +‖θ0‖2}
C2

exp(−2δt),

where δ=1− (Eu0 +Eθ0 )/C2, C =B(C), and

τC((u0, θ0))= inf{s >0 : (u(s), θ(s))∈C given (u(0), θ(0))= (u0, θ0)}.

Proof. Define Y (s, u)=e2δs‖u(s)‖2 and Z(s, θ)=e2δs‖θ(s)‖2. Apply-
ing Ito’s formula gives

dY (s) = [2δY (s)−2e2δs‖∇u(s)‖2 + e2δs〈θ(s), u(s)〉L2 + e2δsEu0 ]ds

+2e2δs〈u, dWu〉L2
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and

dZ(s)= [2δZ(s)−2e2δs‖∇θ(s)‖2 + e2δsEθ0 ]ds+2e2δs〈θ, dWθ 〉L2 .

Adding above two equalities and using Young’s inequality gives us that

d(Y (s)+Z(s))� [Eu0 +Eθ0 − (1− δ)(‖u(s)‖2 +‖θ(s)‖2)]e2δs ds

+2e2δs〈u, dWu〉L2 +2e2δs〈θ, dWθ 〉L2 .

Define Sn= inf{s >0 : ‖u(s)‖2 +‖θ(s)‖2>n(‖u0‖2 +‖θ0‖2)} for each n>1.
Then fix any t and let T =τC ∧Sn∧ t. Integrating the previous equation up
to the stopping time T , it follows that

E(Y (T )+Z(T )) � E(Y (0)+Z(0))

+(Eu0 +Eθ0 )Ee2δT
∫ T

0

(
1− ‖u(s)‖2 +‖θ(s)‖2

C2

)
ds

+2E

∫ T

0
e2δs(〈u, dWu〉L2 +〈θ, dWθ 〉L2). (5.3)

Optional stopping time lemma gives us that

E

∫ T

0
e2δs(〈u(x, s), dWu(x, s)〉L2 +〈θ(x, s), dWθ(x, s)〉L2)

=E

∫ T

0
e2δs(〈u(x, s∧Sn), dWu(x, s)〉L2 +〈θ(x, s∧Sn), dWθ(x, s)〉L2)

=0.

For t <τC , we have ‖u(s)‖2 +‖θ(s)‖2>C2. Hence we obtain E(Y (t ∧τC)+
Z(t ∧τC))�E(Y (0)+Z(0)) by n→∞. Since ‖u(s)‖2 +‖θ(s)‖2 is finite and
continuous in time,we have Sn → ∞ as n→ ∞. Letting n→ ∞, we have
E((Y +Z)(t ∧ τC))�E((Y +Z)(0))). Then we have

E(Y (0)+Z(0))� E{Y (τC)+Z(τC) | t >τC}P{t >τC}
+E{Y (t)+Z(t) | t� τC}P{t� τC}

� C2e2δt
P{t� τC}.

This completes the proof of lemma.
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Lemma 5.3. Fix an h>0 and an open neighborhood U1 of the ori-

gin. Then given any initial condition
(
u0
θ0

)
,

Pu0, θ0

{(
u(nh)

θ(nh)

)
∈U1 for infinitely many n

}
=1.

Proof. Define C and C as in Lemma 5.2. Since U1 is open, we can
pick C1 small enough B(C1)⊂U1. Let T0 be given by Lemma 5.1 when

B(C0)=C, where
(
u0
θ0

)
∈B(C0). Now let T be the smallest integer multi-

ple of h that is greater than (T0 +2h) and set n∗ = (T /h). Define
(
u(nh)

θ(nh)

)
by vn. By Lemma 5.1, there exists a p∗>0 so that

P

{
vn+n∗−1 ∈U1 |

(
u(t)

θ(t)

)
∈C for some t ∈ [(n−1)h, nh]

}
�p∗.

Define the sequence of increasing integer stopping times τn by

τ0 = inf
{
n�1 :

(
u(t)

θ(t)

)
∈C for some t ∈ [(n−1)h, nh]

}

and for k>0

τk = inf
{
n� τk−1 + (n∗ +1) :

(
u(t)

θ(t)

)
∈C for some t ∈ [(n−1)h, nh]

}
.

By Lemma 5.2, it is clear that each τk is almost surely finite. Let us define
#U1(n) as the number of k∈ [0, n] so that vn∈U1. By Lemma 5.1, we have
that for any n and M, with M<n,

P{#U1(τn+n∗)<M}� (1−p∗)n−M.

Hence we see that U1 is visited infinitely often almost surely.

Proof of Theorem 1.2. The proof is almost same as the proof of
ref. 5. But for the completeness, we provide the proof. Let pt be a transi-
tion density of the system (4.1) and (4.2). Fix h>0. Since

∫
ph(0, y)dy=1,

there exists a y0 such that ph(0, y0) > 0. By Lemma 4.3, there exists an
open neighborhood of 0 denoted by A1, an open neighborhood of y0,
denoted by A2, and a positive constant δ0 such that ph(x, y)>δ0 if x∈A1,
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y ∈A2. Let m be the normalized Lebesgue measure on A2. We claim that
Markov chain (un, θn)T by setting (un, θn)T = (u(nh), θ(nh))T satisfies Har-
ris’ condition, i.e., we need to show that for any measurable B⊂A2 such
that m(B)>0,

Pu0,θ0{(un, θn)∈B for infinitely many n}=1.

Let tn be the n-th time such that (un, θn) is in A1. By Lemma 5.3, we see
that tn’s are well defined and finite with probability 1. Define #B(n) as in
the proof of Lemma 5.3, to be the number of k∈ [0, n] such that (uk, θk)∈
B. Since B⊂A2, we have

Pu0,θ0{(un, θn)∈B|(un−1, θn−1)∈A1}=
∫
B

ph((un−1, θn−1), y)dy� δ0m(B).

We have δ1 = δ0m(B) > 0 because m(B) > 0. Fix some positive M and n

with n>M. Hence we have

P{#B(tn+1)<M}� (1− δ1)
n−M.

If n→∞, P{#B(tn+1)<M}→0. Since M is arbitrary, B is visited infinitely
many times almost surely. This completes the proof of Theorem 1.2.

Remark. In the proof of Lemma 4.2, we use the peculiar property
of the three dimension. For the Galerkin approximations of two-dimen-
sional Boussinesq equations, we can show some modes (e.g. (1,0), (1,1))
satisfy (ii) of Lemma 4.2 by direct calculations (see ref. 5). The recurrence
of neighborhoods of the origin is still true for two-dimensional Galerkin
truncation. Thus we can obtain the similar result with Theorem 1.2 (e.g.
for the case that set of modes forced includes (1,0) and (1,1)) for the two-
dimensional Galerkin truncation of the Boussinesq system. It is also inter-
esting to look for other cases(even minimal conditions) for which Theorem
1.2 holds.
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